Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Total Environ ; 892: 164642, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-20231300

ABSTRACT

Characterizing the size distribution of airborne particles carrying SARS-CoV-2 virus is essential for understanding and predicting airborne transmission and spreading of COVID-19 disease in hospitals as well as public and home indoor settings. Nonetheless, few data are currently available on virus-laden particle size distribution. Thus, the aim of this study is reporting the total concentrations and size distributions of SARS-CoV-2- genetic material in airborne particles sampled in hospital and home environments. A nanoMOUDI R122 cascade impactor (TSI, USA) was used to collect size-segregated aerosol down to the sub-micron range in home and in three different hospital environments in presence of infected patients in order to provide the concentration of airborne SARS-CoV-2 genetic material for each particle size range at different sampling locations. Providing one of the largest datasets of detailed size-fractionated airborne SARS-CoV-2 RNA to date, we found that 45.2 % of the total sub- and super-micrometric fractions were positive for SARS-CoV-2 with its genetic material being present in 17.7 % of sub-micrometric (0.18-1 µm) and 81.9 % of super-micrometric (>1 µm) fractions. The highest concentration of SARS-CoV-2 genetic material in total suspended particles (5.6 ± 3.4 RNA copies m-3) was detected in the room occupied with patients with more severe COVID-19 symptoms collected during the patients' high flow nasal oxygen therapy. The highest concentration at certain particle size fraction strongly depends on the sampling environment. However, the contribution of SARS-CoV-2 genetic material was in favour of super-micrometric compared to sub-micrometric particle size range. The evaluation of the individual risk of infection was carried out on the basis of the obtained data considering a hypothetical exposure scenario. The obtained results indicate the necessity of the protective masks in presence of infected subjects, especially while staying for longer period of time in the hospital environments.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , RNA, Viral , Respiratory Aerosols and Droplets , Hospitals
2.
Eur J Pharm Biopharm ; 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2245731

ABSTRACT

During the SARS-CoV2 pandemic mRNA vaccines in the form of lipid nanoparticles (LNPs) containing the mRNA, have set the stage for a new area of vaccines. Analytical methods to quantify changes in size and structure of LNPs are crucial, as changes in these parameters could have implications for potency. We investigated the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) as quantitative stability-indicating method to detect structural changes of mRNA-LNP vaccines upon relevant stress factors (freeze/thaw, heat and mechanical stress), in comparison to qualitative dynamic light scattering (DLS) analysis. DLS was capable to qualitatively determine size and homogeneity of mRNA-LNPs with sufficient precision. Stress factors, in particular freeze/thaw and mechanical stress, led to increased particle size and content of larger species in DLS and SV-AUC. Changes upon heat stress at 50 °C were only detected as increased flotation rates by SV-AUC. In addition, SV-AUC was able to observe changes in particle density, which cannot be detected by DLS. In conclusion, SV-AUC can be used as a highly valuable quantitative stability-indicating method for characterization of LNPs.

4.
J Hazard Mater Adv ; 8: 100183, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2178972

ABSTRACT

The COVID-19 pandemic highlighted public awareness of airborne disease transmission in indoor settings and emphasized the need for reliable air disinfection technologies. This increased awareness will carry in the post-pandemic era along with the ever-emerging SARS-CoV variants, necessitating effective and well-defined protocols, methods, and devices for air disinfection. Ultraviolet (UV)-based air disinfection demonstrated promising results in inactivating viral bioaerosols. However, the reported data diversity on the required UVC doses has hindered determining the best UVC practices and led to confusion among the public and regulators. This article reviews available information on critical parameters influencing the efficacy of a UVC air disinfection system and, consequently, the required dose including the system's components as well as operational and environmental factors. There is a consensus in the literature that the interrelation of humidity and air temperature has a significant impact on the UVC susceptibility, which translate to changing the UVC efficacy of commercialized devices in indoor settings under varying conditions. Sampling and aerosolization techniques reported to have major influence on the result interpretation and it is recommended to use several sampling methods simultaneously to generate comparable and conclusive data. We also considered the safety concerns and the potential safe alternative of UVC, far-UVC. Finally, the gaps in each critical parameter and the future research needs of the field are represented. This paper is the first step to consolidating literature towards developing a standard validation protocol for UVC air disinfection devices which is determined as the one of the research needs.

5.
Atmospheric Chemistry and Physics ; 22(6):4047-4073, 2022.
Article in English | ProQuest Central | ID: covidwho-1766081

ABSTRACT

This paper concerns an in-depth analysis of an exceptional incursion of mineral dust over southern Europe in late March 2020 (27–30 March 2020). This event was associated with an anomalous circulation pattern leading to several days of PM10 (particulate matter with an aerodynamic diameter less than 10 µm) exceedances in connection with a dust source located in central Asia;this is a rare source of dust for Europe, which is more frequently affected by dust outbreaks from the Sahara Desert. The synoptic meteorological configuration was analyzed in detail, and the aerosol evolution during the transit of the dust plume over northern Italy was assessed at high time resolution by means of optical particle counting at three stations, namely Bologna, Trieste, and Mt. Cimone, allowing for the revelation of the transport timing among the three locations. Back-trajectory analyses supported by Copernicus Atmosphere Monitoring Service (CAMS) maps allowed for the location of the mineral dust source area in the Aralkum region. Therefore, the event was analyzed by observing the particle number size distribution with the support of chemical composition analysis. It is shown that the PM10 exceedance recorded is associated with a large fraction of coarse particles, which is in agreement with mineral dust properties. Both the in situ number size distribution and the vertical distribution of the dust plume were cross-checked using lidar ceilometer and aerosol optical depth (AOD) data from two nearby stations and showed that the dust plume (in contrast to those originating from the Sahara Desert) traveled close to the ground (up to a height of about 2 km). The limited mixing layer height caused by high concentrations of absorbing and scattering aerosols caused the mixing of mineral dust with other locally produced ambient aerosols, thereby potentially increasing its morbidity effects.

6.
Environ Technol Innov ; 25: 102165, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568695

ABSTRACT

Face masks are critical in preventing the spread of respiratory infections including coronavirus disease 2019 (COVID-19). Different types of masks have distinct filtration efficiencies (FEs) with differential costs and supplies. Here we reported the impact of breathing volume and wearing time on the inward and outward FEs of four different mask types (N95, surgical, single-use, and cloth masks) against various sizes of aerosols. Specifically, 1) Mask type was an important factor affecting the FEs. The FEs of N95 and surgical mask were better than those of single-use mask and cloth mask; 2) As particle size decreased, the FEs tended to reduce. The trend was significantly observed in FEs of aerosols with particle size < 1 µ m ; 3) After wearing N95 and surgical masks for 0, 2, 4, and 8 h, their FEs (%) maintained from 95.75 ± 0.09 to 100 ± 0 range. While a significant decrease in FEs were noticed for single-use masks worn for 8 h and cloth masks worn >2 h under deep breathing (30 L/min); 4) Both inward and outward FEs of N95 and surgical masks were similar, while the outward FEs of single-use and cloth masks were higher than their inward FEs; 5) The FEs under deep breathing was significantly lower than normal breathing with aerosol particle size <1 µ m. In conclusion, our results revealed that masks have a critical role in preventing the spread of aerosol particles by filtering inhalation, and FEs significantly decreased with the increasing of respiratory volume and wearing time. Deep breathing may cause increasing humidity and hence decrease FEs by increasing the airflow pressure. With the increase of wearing time, the adsorption capacity of the filter material tends to be saturated, which may reduce FEs. Findings may be used to provide information for policies regarding the proper use of masks for general public in current and future pandemics.

7.
Int J Environ Res Public Health ; 18(4)2021 02 08.
Article in English | MEDLINE | ID: covidwho-1079658

ABSTRACT

BACKGROUND: During the SARS-CoV-2 pandemic, there was shortage of the standard respiratory protective equipment (RPE). The aim of this study was to develop a procedure to test the performance of alternative RPEs used in the care of COVID-19 patients. METHODS: A laboratory-based test was developed to compare RPEs by total inward leakage (TIL). We used a crossflow nebulizer to produce a jet spray of 1-100 µm water droplets with a fluorescent marker. The RPEs were placed on a dummy head and sprayed at distances of 30 and 60 cm. The outcome was determined as the recovery of the fluorescent marker on a membrane filter placed on the mouth of the dummy head. RESULTS: At 30 cm, a type IIR surgical mask gave a 17.7% lower TIL compared with an FFP2 respirator. At 60 cm, this difference was similar, with a 21.7% lower TIL for the surgical mask compared to the respirator. When adding a face shield, the TIL at 30 cm was further reduced by 9.5% for the respirator and 16.6% in the case of the surgical mask. CONCLUSIONS: A safe, fast and very sensitive test method was developed to assess the effectiveness of RPE by comparison under controlled conditions.


Subject(s)
COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/standards , Personal Protective Equipment/standards , Respiratory Protective Devices/standards , Aerosols/adverse effects , Humans , Occupational Exposure/prevention & control , SARS-CoV-2 , Ventilators, Mechanical , Water
8.
Sci Total Environ ; 759: 143548, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-912622

ABSTRACT

Factor analysis models use the covariance of measured variables to identify and apportion sources. These models, particularly positive matrix factorization (PMF), have been extensively used for analyzing particle number concentrations (PNCs) datasets. However, the variation of observed PNCs and particle size distribution are driven by both the source emission rates and atmospheric dispersion as well as chemical and physical transformation processes. This variation in the observation data caused by meteorologically induced dilution reduces the ability to obtain accurate source apportionment results. To reduce the influence of dilution on quantitative source estimates, a methodology for improving the accuracy of source apportionment results by incorporating a measure of dispersion, the ventilation coefficient, into the PMF analysis (called dispersion normalized PMF, DN-PMF) was applied to a PNC dataset measured from a field campaign that includes the Spring Festival event and the start of the COVID-19 lockdown in Tianjin, China. The data also included gaseous pollutants and hourly PM2.5 compositional data. Eight factors were resolved and interpreted as municipal incinerator, traffic nucleation, secondary inorganic aerosol (SIA), traffic emissions, photonucleation, coal combustion, residential heating and festival emissions. The DN-PMF enhanced the diel patterns of photonucleation and the two traffic factors by enlarging the differences between daytime peak values and nighttime concentrations. The municipal incinerator plant, traffic emissions, and coal combustion have cleaner and more clearly defined directionalities after dispersion normalization. Thus, dispersion normalized PMF is capable of enhancing the source emission patterns. After the COVID-19 lockdown began, PNC of traffic nucleation and traffic emissions decreased by 41% and 44%, respectively, while photonucleation produced more particles likely due to the reduction in the condensation sink. The significant changes in source emissions indicate a substantially reduced traffic volume after the implement of lockdown measures.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , China , Communicable Disease Control , Disease Outbreaks , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
9.
Data Brief ; 33: 106445, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-893721

ABSTRACT

The COVID-19 outbreak is now one of the most critical crises to manage for most of national healthcare systems in the world. The situation is complicated by the absence of vaccines and authorized pharmacological treatments, except for remdesivir. In this context, many medicaments, including different Ebola and HIV antivirals, are used off-label in the hospital wards as life-treating medicines for COVID-19 patients. Authorized medicaments manipulation is sometimes necessary because they are not always formulated to be administered to non-cooperative patients or they are in shortage. It is this the case of the fixed combination of lopinavir/ritonavir, which was extensively used in the first phase of the outbreak inducing a shortage of the oral solution available in the EU market. This work provides data on size distribution, osmolarity other than drug chemical stability of a lopinavir/ritonavir extemporaneous preparation made by using the solid dosage form (i.e., tablet) available on the market as drug source. The reported data indicate that such preparation is suitable to be delivered through a nasogastric tube, and enough stable for two weeks from the preparation at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL